| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 
 | import numpy as npimport tensorflow as tf
 from tensorflow import keras
 
 
 x = np.random.rand(100, 1)
 y = 5 * x + 5 * np.random.rand(1)
 
 
 model = keras.Sequential([
 keras.layers.Dense(32, activation=tf.nn.relu, input_shape=(1,)),
 keras.layers.Dense(32, activation=tf.nn.relu),
 keras.layers.Dense(1)
 ])
 
 
 model.compile(optimizer='adam', loss='mse', metrics=['mse', 'binary_crossentropy'])
 
 
 history = model.fit(x, y, epochs=500, batch_size=100)
 
 
 import matplotlib.pyplot as plt
 plt.scatter(x, y, label='y_true')
 plt.scatter(x, model.predict(x), label='y_pred')
 plt.legend()
 plt.show()
 
 |