1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
| import cv2 import numpy as np
trap_bottom_width = 0.85 trap_top_width = 0.075 trap_height = 0.43
def region_of_interest(img_src): img_mask = np.zeros_like(img_src)
if img_src.ndim > 2: channel_count = img_src.shape[2] ignore_mask_color = (255, 255, 255) else: ignore_mask_color = 255
imshape = img_src.shape vertices = np.array([[ \ ((imshape[1] * (1 - trap_bottom_width)) // 2, imshape[0]), \ ((imshape[1] * (1 - trap_top_width)) // 2, imshape[0] - imshape[0] * trap_height), \ (imshape[1] - (imshape[1] * (1 - trap_top_width)) // 2, imshape[0] - imshape[0] * trap_height), \ (imshape[1] - (imshape[1] * (1 - trap_bottom_width)) // 2, imshape[0])]] \ , dtype=np.int32)
cv2.fillPoly(img_mask, vertices, ignore_mask_color)
img_src = cv2.bitwise_and(img_src, img_mask) return img_src
def draw_lines(img, lines, color=[255, 0, 0], thickness=10): if lines is None: return if len(lines) == 0: return draw_right = True draw_left = True
slope_threshold = 0.5 slopes = [] new_lines = [] for line in lines: x1, y1, x2, y2 = line[0]
if x2 - x1 == 0.: slope = 999. else: slope = (y2 - y1) / (x2 - x1)
if abs(slope) > slope_threshold: slopes.append(slope) new_lines.append(line)
lines = new_lines
right_lines = [] left_lines = [] for i, line in enumerate(lines): x1, y1, x2, y2 = line[0] img_x_center = img.shape[1] / 2 if slopes[i] > 0 and x1 > img_x_center and x2 > img_x_center: right_lines.append(line) elif slopes[i] < 0 and x1 < img_x_center and x2 < img_x_center: left_lines.append(line)
right_lines_x = [] right_lines_y = []
for line in right_lines: x1, y1, x2, y2 = line[0]
right_lines_x.append(x1) right_lines_x.append(x2)
right_lines_y.append(y1) right_lines_y.append(y2)
if len(right_lines_x) > 0: right_m, right_b = np.polyfit(right_lines_x, right_lines_y, 1) else: right_m, right_b = 1, 1 draw_right = False
left_lines_x = [] left_lines_y = []
for line in left_lines: x1, y1, x2, y2 = line[0]
left_lines_x.append(x1) left_lines_x.append(x2)
left_lines_y.append(y1) left_lines_y.append(y2)
if len(left_lines_x) > 0: left_m, left_b = np.polyfit(left_lines_x, left_lines_y, 1) else: left_m, left_b = 1, 1 draw_left = False
y1 = img.shape[0] y2 = img.shape[0] * (1 - trap_height)
right_x1 = (y1 - right_b) / right_m right_x2 = (y2 - right_b) / right_m
left_x1 = (y1 - left_b) / left_m left_x2 = (y2 - left_b) / left_m
y1 = int(y1) y2 = int(y2) right_x1 = int(right_x1) right_x2 = int(right_x2) left_x1 = int(left_x1) left_x2 = int(left_x2)
if draw_right: cv2.line(img, (right_x1, y1), (right_x2, y2), color, thickness) if draw_left: cv2.line(img, (left_x1, y1), (left_x2, y2), color, thickness)
if __name__ == '__main__':
capture = cv2.VideoCapture("race.mp4")
rho = 2 theta = 1 * np.pi / 180 threshold = 15 min_line_len = 10 max_line_gap = 20
while cv2.waitKey(33) < 0: if (capture.get(cv2.CAP_PROP_POS_FRAMES) == capture.get(cv2.CAP_PROP_FRAME_COUNT)): capture.set(cv2.CAP_PROP_POS_FRAMES, 0) ret, frame = capture.read() img_gray = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY) img_gray = cv2.GaussianBlur(img_gray, (5, 5), 0)
img_canny = cv2.Canny(img_gray, 95, 200) img_canny = region_of_interest(img_canny)
lines = cv2.HoughLinesP(img_canny, rho, theta, threshold, np.array([]), \ minLineLength=min_line_len, maxLineGap=max_line_gap) img_lines = np.zeros_like(frame) draw_lines(img_lines, lines) img_dst = cv2.addWeighted(frame, 0.8, img_lines, 1.0, 0.0)
cv2.imshow("frame",img_dst)
capture.release() cv2.destroyAllWindows()
|